
46 Pettine Street - Coventry, RI

Adaptive Reuse Feasibility Study

State of Rhode Island – Executive Office of Housing

October 27, 2025

46 Pettine Street

Signal Works
Architecture

11 ALEPPO STREET
PROVIDENCE, RHODE ISLAND

**To us, buildings
are more than
structures,**

**They are
signals
broadcasting
your mission.**

**Together, we'll
create a work
that embodies
your values:**

We turn Broken Buildings into Purposeful Places

TABLE OF CONTENTS

Introduction

Project Introduction & Process

Project Background

Building Assessment & Information

Zoning Analysis

Conceptual Diagrams

Approach Summary

Floor Plan Diagrams

PHIUS Energy Modeling

Approach Summary

Modeling Results

Existing Building Model

Use Case #01: IECC Compliant Model

Use Case #02: PHIUS Compliant Model

Rough Order of Magnitude (ROM) Cost Estimate

Approach Summary

Estimate Findings

Use Case #01: IECC Compliant ROM

Use Case #02: PHIUS Compliant ROM

Conclusions

Summary of Findings

Recommended Next Steps

Appendix *(to be distributed separately)*

Level 1 & 2 Presentation Slide Decks (pdf format)

Existing Conditions Revit Model w/ Electronic Transfer Agreement

INTRODUCTION

Scope Introduction and Process

Signal Works Architecture is proud to support the Rhode Island Executive Office of Housing in a statewide initiative aimed at converting underutilized buildings—with a focus on former public schools—into affordable housing. This program presents an opportunity to transform dormant civic & private infrastructure into long-term housing solutions that are sustainable, energy-efficient, and responsive to the character and needs of Rhode Island communities.

Our feasibility studies are designed to provide high-level yet thorough insight into the potential reuse of each site. The purpose of this early-phase work is to prepare municipalities or property owners with the information necessary to craft targeted Requests for Proposals (RFPs) for developers or architect-engineer (A/E) teams who will ultimately carry these projects forward into full design and construction.

Each study begins with a review of existing architectural conditions. Depending on the building's size and available documentation, this may include Matterport 3D scanning, on-site walkthroughs, photographic documentation, or basic dimensional verification using provided drawings. While not intended as a comprehensive building assessment, this phase establishes a reliable understanding of the building's form and layout, which becomes the foundation for design development.

To support planning and regulatory alignment, we also perform a site and zoning analysis. This includes a review of use classifications, dimensional requirements, density and parking regulations, and relevant municipal ordinances. Our goal is to clearly identify development potential while also flagging any site or zoning-related roadblocks that could impact feasibility. This allows municipalities or property owners to make informed decisions and anticipate challenges early.

From this groundwork, our office will typically develop two conceptual design options tailored to each site - some project sites only warrant a single design approach. The first option emphasizes minimal intervention—working within the constraints of existing wall locations to limit complexity and control construction cost. The second option aims to maximize housing yield, reconfiguring interior spaces to increase the number of residential units within zoning limits. Both designs are developed with spatial efficiency, residential code considerations, and community scale in mind.

Recognizing the long-term value of energy performance, our team provides comparative energy modeling for each study. Three scenarios are modeled: a baseline representing the building's existing energy use; a path to compliance with the International Energy Conservation Code (IECC); and a third scenario that aligns with [PHIUS \(Passive House Institute US\)](#) standards. This layered approach enables decision-makers to weigh performance outcomes and cost implications across different redevelopment strategies.

To complement the design and energy work, we prepare a Rough Order of Magnitude (ROM) cost estimate for each concept. These figures offer a preliminary sense of construction investment, informed by comparable adaptive reuse projects and current market conditions. While conceptual in nature, they provide a clear starting point for capital planning and funding alignment.

Taken together, these studies equip the municipalities or property owners with the tools necessary to initiate housing redevelopment in a strategic, coordinated, and informed manner. Our deliverables—conceptual designs, zoning insights, energy models, and cost projections—are designed to be actionable and adaptable, forming a bridge between underutilized buildings and future homes for Rhode Islanders.

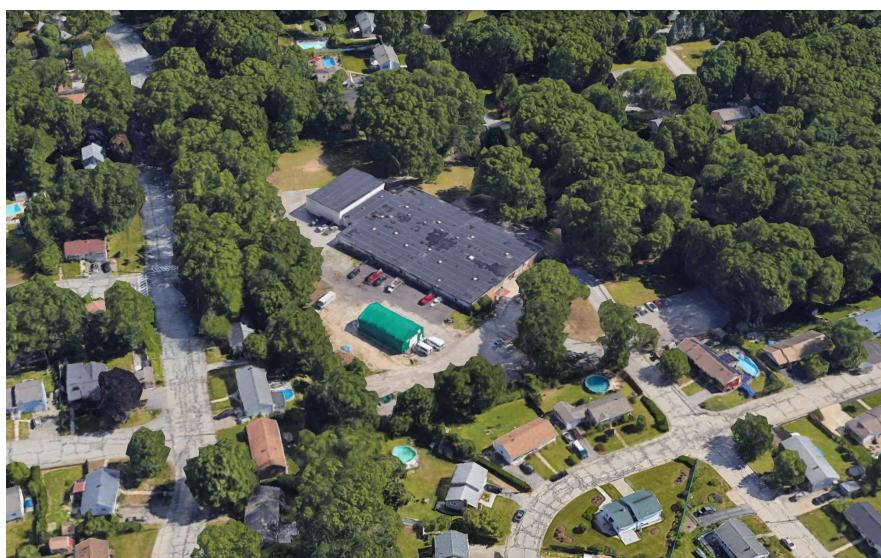
PROJECT BACKGROUND

Building Assessment & Information

Property Address: 46 Pettine Street, Coventry, RI 02816

Plat/Lot: 0047-033.000

Existing Use: Education (“E”) - Former Public School


Zoning Designation: Residential (“R-20”)

Proposed Use: Multi-Family (“R-2”) - Affordable Housing; Apartment-Style

Year Built: 1960s

Lot Size: 7-Acres (304,920 GSF)

Building Size: 29,200 GSF

46 Pettine Street Lot

The subject property is a former school building, the Oak Haven Elementary School located at 46 Pettine Street in Coventry, Rhode Island. Constructed in 1963, the structure encompasses approximately 29,200 gross square feet (GSF) across a 304,920 GSF lot (7-acres). The building is masonry construction and representative of institutional architecture typical of its era, with large classroom bays, wide corridors, and high ceilings — all favorable for conversion to residential use.

The proposed redevelopment plan calls for a full adaptive reuse of the existing structure into housing. The building’s size, structural integrity, and layout support this transition, with opportunity for unit mix flexibility and retention of certain historic or architectural features.

Demographics, Planning, and Housing Opportunities

Coventry is a mid-sized Rhode Island community with a strong sense of local identity and a growing interest in revitalization and adaptive reuse. The town's population is stable and community-oriented, with a large number of long-term residents. Much of Coventry's built environment consists of established neighborhoods and single family homes, with only a modest share of multi-family or mixed-use developments.

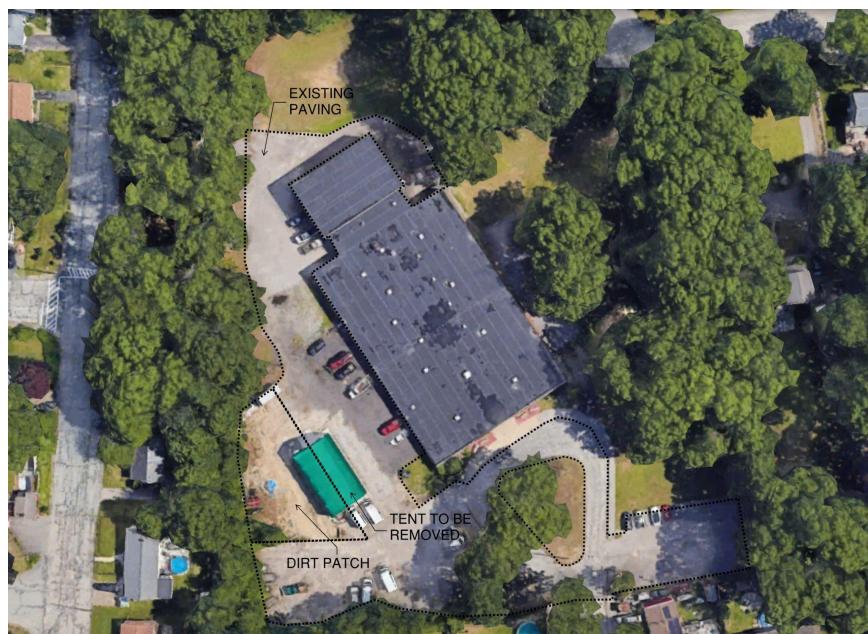
Due to single family residences making up the majority of the housing stock, there is a clear need for additional rental and multi-family options. The limited supply of apartments, coupled with the rising demand for low-maintenance living spaces, has created an opportunity for infill and reuse development. Repurposing existing structures, such as former schools, into modern apartments can help diversify the housing market, attract younger professionals and downsizing residence, and preserve community landmarks while meeting the local housing needs.

Development constraints and opportunities include:

- Adequate building area to support a significant unit count
- Potential historic designation or community interest in preservation (to be assessed)
- Lot Coverage is compliant at 9.6%
- Frontage at Pettine is non-compliant
- Frontage at Princeton complies
- Setbacks are compliant
- Low- and Moderate- Income Housing requirements

Sources: [Ecode360](#), [RI Housing](#)

Chapter 24, Section 45-24-37 of the Rhode Island General Laws outlines a key requirement for adaptive reuse projects. The redevelopment of existing commercial buildings such as schools, offices, medical buildings, religious facilities, or malls into residential or mixed-use spaces.


Under this statute, at least 10% of the resulting dwelling units must be designed as Low- and Moderate- Income Housing (LMIH) to promote equitable access to housing while strengthening community diversity.

For the 46 Pettine development, this regulation directly impacts the residential program. Based on the proposed total unit count, the project would be required to allocate 3 units to LMIH to comply with the state mandate. These units should be integrated within the development rather than isolated, ensuring that affordable housing residents experience the same level of quality, access, and amenities as market-rate tenants.

This requirement not only fulfills a regulatory obligation but also advances broader planning goals within Rhode Island - supporting socioeconomic inclusivity, adaptive reuse sustainability, and neighborhood revitalization. According to the 2024 Low- and Moderate- Income Housing State Chart that lists all municipalities, Coventry currently has 6.65% LMIH, where ideally the requirement is set at 10% of housing should be LMIH. By transforming an underutilized site into a mixed-income residential community, the project aligns with state and municipal objectives to both expand affordable housing availability and preserve existing built infrastructure through thoughtful, sustainable redevelopment.

Existing Site Condition

The existing site conditions reflect a mix of deterioration and general wear, with noticeable cracking and unevenness across the paved areas, particularly near the front entryway and parking lot. A temporary storage tent currently occupies a portion of the site where the surface consists of exposed soil, contributing to an uneven appearance and potential drainage issues. While some hardscape elements remain functional, the overall condition indicates that coordinated surface and landscape rehabilitation will be needed to restore both performance and visual quality.

46 Pettine Existing Site Condition

Recommended Approach

For the proposed development at 46 Pettine Street, the existing non-conforming frontage along Pettine Street is not anticipated to present an issue, as the Coventry Planning Department

recognizes either Pettine Street or Princeton Avenue as acceptable frontage for the site. The town planner of Coventry has confirmed this determination; however it is recommended that the project team follow up with the Planning department during the permitting phase to verify consistency with the current review process. Coventry currently defines “frontage” as “the length of any one property line of a premises, which property line abuts a legally accessible right-of-way, or burdened by access easement, across which access is legally and physically available for pedestrians and vehicles; or, in the case of a corner lot, all sides of a lot adjacent to street right-of-way shall be considered frontage”.

To improve the site, the existing paved areas should be demolished and repaved with new asphalt, followed by sealing and line striping to clearly define parking spaces and circulation paths. Once the storage tent is removed, the exposed ground should be loamed and reseeded to establish healthy ground cover and unify the landscaping overall. The front entry can be enhanced with refreshed landscaping featuring low maintenance shrubs and compact plantings, creating a more welcoming and cohesive streetscape. The existing pedestrian walkway from 46 Pettine Street to Princeton Avenue should remain, and receive low plantings to highlight its placement. On the North East side of the site lies a small paved path to Turcotte Street. An existing fence separates these connection points, but could be removed for overall site accessibility. Together, these improvements will strengthen the site's functionality, aesthetics, and sense of arrival for future residents and visitors.

A recommended approach for the 24-unit conversion of the former school is to focus on creating a more diverse and inclusive housing market within Coventry. Transforming the building into residential units will help address local housing needs and offer opportunities for a broader range of residents to live within the community. In addition, the development should comply with state and local requirements for Low- and Moderate- Income Housing, ensuring that affordability and accessibility are built into the project from the start. Shared amenities such as community spaces, outdoor gathering areas, and on-site parking should be designed to encourage long-term residency and a sense of belonging. Supporting a stable and sustainable neighborhood that fits seamlessly within the surrounding Coventry context.

The existing conditions are based on client-provided documentation and on-site photography. A complete due diligence is strongly recommended to analyze the building and confirm the building's dimensions, systems, and to formally assess the building. The team's proposed redevelopment plan calls for an adaptive reuse of existing structure within the building's envelope into multi-family housing. The building's size, structural integrity, and layout support this transition, with opportunity for unit mix flexibility and retention of certain historic or architectural features.

Zoning Analysis

Zoning District: R-20

Adjacent Zoning: R-20 (Residential 20,000)

The property is zoned **R-20 – RESIDENTIAL**, a designation used broadly in Coventry. The R-20 zone **does not permit multi-family residential use by-right**. However, **Section §255-990 of the Coventry Zoning Ordinance, Adaptive Reuse Projects** permits adaptive reuse of buildings in the R-20 zone **subject to specific criteria**. Compliance with these requirements will be essential for permitting. Refer to this section for specific information and requirements.

Parking Requirements

The city requires **1 off-street parking space per dwelling unit**. Requiring 24 parking spaces on the 46 Pettine Street site. The existing lot has the potential to fit between 50-70 spaces based on square footage of paved areas; the exact number of parking is dependent on the efficiency of the parking space layout.

A detailed parking and site access strategy will accompany the project's development and permitting phases.

Approach Summary

This proposal reimagines the decommissioned public school on Pettine Street into a **24-unit residential community**, adapting the building's institutional legacy into a new chapter of public service. Once a place of education, the structure will now serve the community through affordable housing, providing well designed living spaces that retain the architectural character of the school while adapting it to contemporary needs.

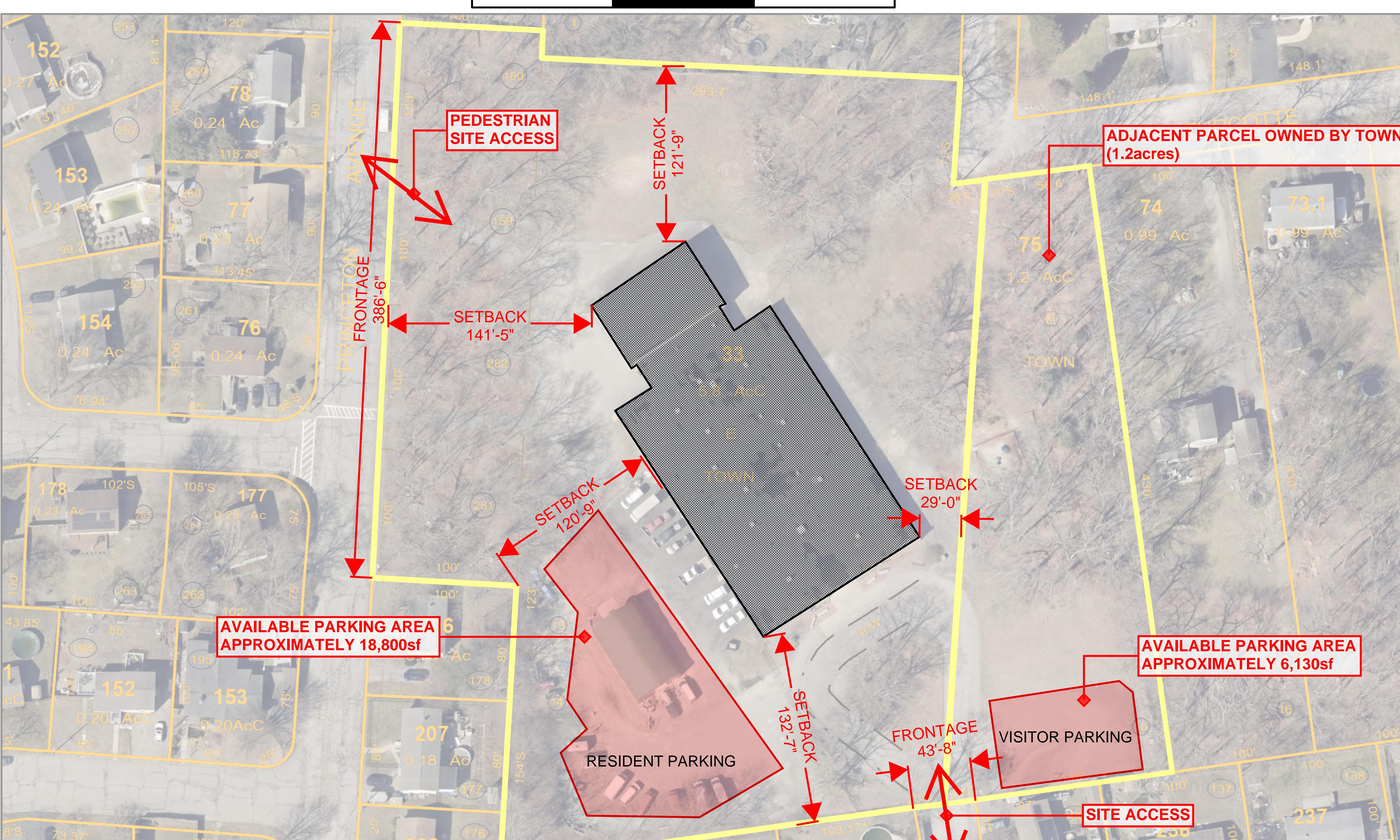
Two distinct design strategies were initially considered for this feasibility phase. The first design strategy pursued a restrained approach, carefully dissecting the existing school layout and adapting it to housing while preserving much of its original spatial logic. The central corridors and classroom footprint remained largely intact, with classrooms on the perimeter turning into residential units. Community spaces were integrated into central areas, taking advantage of the building's broad corridors and shared programmatic spaces. The gymnasium, classrooms, and office spaces were left largely untouched. This approach prioritized efficiency and conserved much of the building fabric, creating a balance of housing and community amenities. However, the limited intervention approach limited the total unit count and did not unlock the building's full potential.

The second design approach was more ambitious, pursuing an increased unit count through strategic interior demolition and reconfiguration. A majority of the interior partitions central to the school were removed to reorganize the floor plan as efficient housing layouts. The gymnasium was converted into four residential units, each designed as two bedroom, two bathroom units with loft space that capitalizes on the double height volume. Two internal courtyards were carved into the building's center, bringing natural light deep into the interior and supporting units that otherwise would have lacked daylight access. This reorganization resulted in eight additional units compared to the first option, while also creating a higher quality residential environment. While option 2 required greater intervention, it achieved a more successful balance of unit density, livability, and long-term building performance.

Final Design Strategy

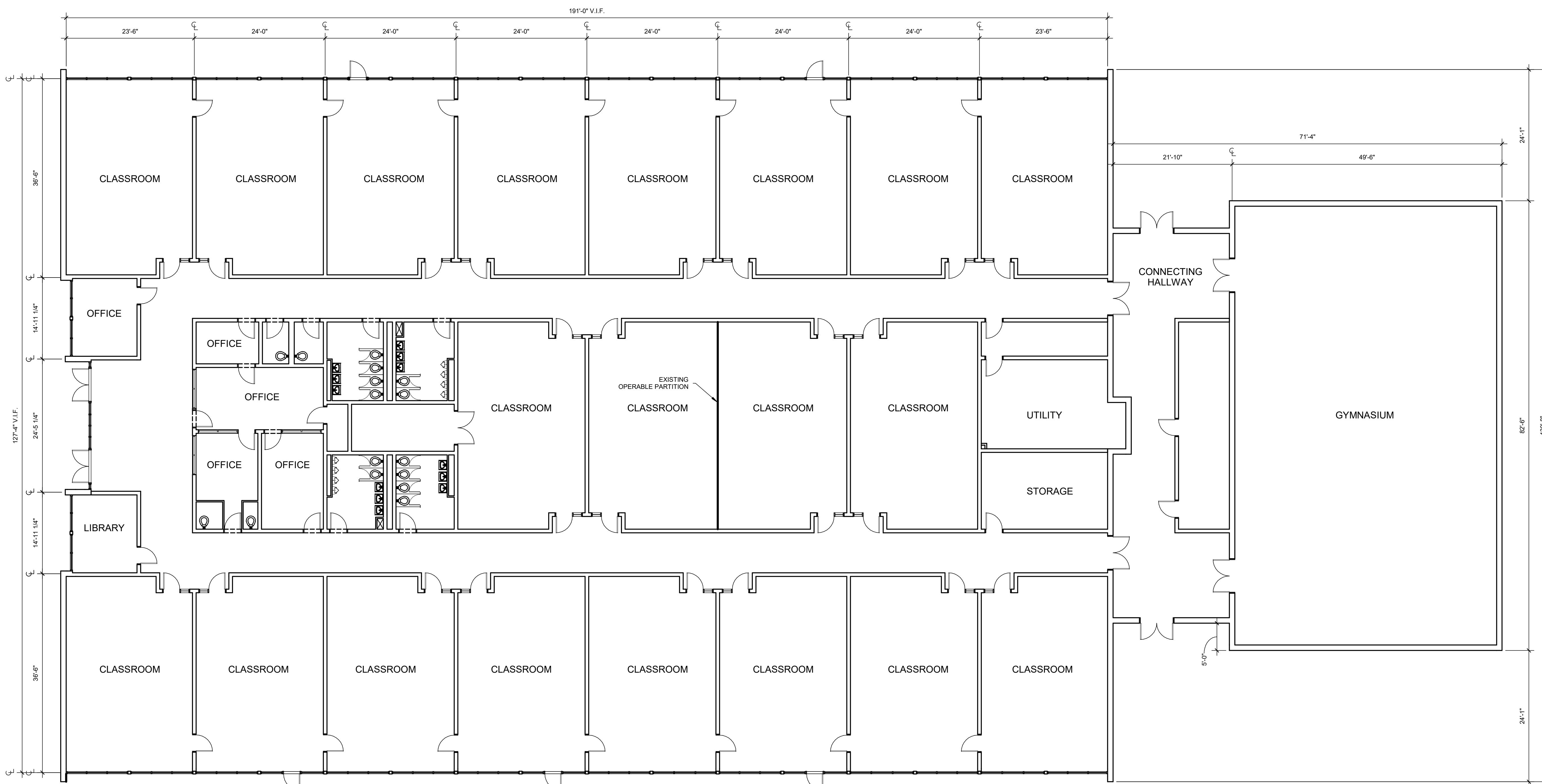
The final design strategy for the Pettine Street adaptive reuse project adapts the second, more ambitious approach, aligning with both the spatial potential of the existing school structure and the broader community goals established by Coventry's zoning ordinance (255-990 Adaptive Reuse Projects).

The strategy was selected because it maximizes the building's capacity for meaningful residential use while preserving its architectural character. By reconfiguring the interior layout and introducing two new courtyards, the design transforms a formerly institutional space into bright, liveable housing that meets contemporary standards for comfort, efficiency, and accessibility. The gymnasium's conversion into loft-style units demonstrates a sensitive yet inventive reuse ensuring the space's volume and identity remain legible while offering unique housing opportunities.


From a planning perspective, this approach supports Coventry's housing objectives particularly the need for more diverse and affordable housing types while complying with the state's adaptive reuse and LMIH requirements. The additional three units generated through this configuration directly enhance the project's economic feasibility and social value, creating stronger contributions to the overall housing stock. Ultimately, this design was chosen because it delivers a balanced synthesis of density, livability, and heritage preservation, transforming an underused community asset into a sustainable, long-term residential resource.

Key Features:

- Two Interior courtyards, each approximately 900-950 sq. ft., bring daylight and ventilation into the core of the building
- Four new two-bedroom, two-bathroom loft units (two-stories) in the gymnasium (approx. 1330 sq. ft. each), taking advantage of the double-height space
- Classrooms (approx. 800 sq. ft. each) reimagined as one-bedroom, one-bathroom units
- Existing storage and utility rooms retained, measuring approx. 500-600 sq. ft.
- Former office and library spaces converted into two community rooms (each approx. 170 sq. ft.), supporting resident gathering, co-working, or shared services.
- Building envelope upgrades to meet PHIUS or IECC standards, including high-performance exterior wall assemblies and window replacements.


Unit Mix and Program Distribution:

- 1-Bedroom / 1-Bathroom Units: 20 units (approx. 800 sq. ft. each)
- 2-Bedroom / 2-Bathroom Units: 4 units (approx. 1330 sq. ft. each)
- Community Spaces: 2 rooms (approx. 170 sq. ft.)
- Courtyards: 2 spaces (approx. 900-950 sq. ft.)
- Support/Utility: 2 rooms (approx. 500-600 sq. ft. each)

EXISTING SITE PLAN

09/03/2025

1 First Floor Existing

EXISTING FLOOR PLAN

09/03/2025

PROPOSED FLOOR PLAN
09/03/2025

Approach Summary

This feasibility study examines how 46 Pettine could be renovated to serve a new purpose while also lowering overall building energy use. Three scenarios were modeled to understand what is possible: **the existing conditions, a renovation that meets the International Energy Conservation Code (IECC), and a renovation that follows the more rigorous Passive House Institute US (PHIUS) standard.** The main difference between IECC and PHIUS is that IECC ensures buildings meet the minimum legal requirements for efficiency. PHIUS, by contrast, sets a higher bar and delivers a building that is more comfortable, resilient, and cost-effective to operate over time.

Modeling Results

Existing Building Overview

The current building serves as the baseline for evaluation. As it stands, the structure is outdated in terms of energy performance. With virtually no insulation, modest-quality windows, and significant air leakage, the building consumes far more energy than is appropriate for modern standards. This level of performance is neither cost-effective in the long term nor suitable for meeting current energy codes.

Assumed Values for the Existing Building

- **Slab:** Uninsulated
- **Walls (Above Grade):** Face brick over CMU block, uninsulated
- **Roof:** 3" Polyiso, R-18
- **Windows:** Single Pane Whole Window U-0.67, Glass U-Value U-0.7, SHGC-0.3
- **Heating (HVAC):** Central Boiler
- **Domestic Hot Water (DHW):** Central Boiler
- **Ventilation:** Supply ventilation, Uninsulated Ductwork
- **Lighting:** Non-LED

What This Means

This data highlights the inefficiency of the existing building. High energy use is driven by poor insulation values, leaky construction, and outdated mechanical systems. Crucially, these performance levels **do not meet IECC code minimums for energy compliance.** As a result,

the building is not only energy-intensive but also non-compliant with modern standards—making renovation and upgrades essential.

Why Change is Needed

To remain viable, the building must reduce its energy demand and improve efficiency. Without upgrades, it will continue to have high operating costs, poor comfort levels, and a larger carbon footprint.

The next two options demonstrate how this building can be transformed:

1. **Code-Minimum Renovation (IECC-Compliant):** Meeting current standards for insulation, airtightness, and system performance.
2. **High-Performance Upgrade (PHIUS):** Going beyond code minimums to create a building that is exceptionally efficient, comfortable, and resilient.

Both paths represent significant improvements over the baseline, but with very different long-term impacts.

IECC-Compliant Building Renovation

The first renovation scenario upgrades the building to meet **IECC code minimums**. This means bringing the structure in line with today's baseline legal requirements for energy performance. To achieve this, the design includes continuous exterior insulation, higher-performing windows, better air sealing, and more efficient heating, cooling, and ventilation systems.

With these upgrades, the building becomes **legally compliant and far more efficient** than its current state. Energy use drops by about two-thirds ([Source Link 1](#), [Source Link 2](#)), showing how significant code-minimum improvements can be. This represents the standard benchmark for permitting and what a “typical” renovated building would look like under today’s energy codes.

Assumed Values for IECC Renovation

- **Slab:** Uninsulated, perimeter insulation only R10, 4' down
- **Walls (Above Grade):** R-12 Continuous over mass wall
- **Roof:** R-32 over decking
- **Windows:** U-0.3 SHGC-0.3
- **Air Leakage:** 0.4 CFM/ SF
- **HVAC:** Balanced ventilation, no recovery efficiency. 0.8 W/CFM
- **DHW:** CentralHybrid HPWH, UEF 3.45, recirculation

- **Lighting:** LED

What This Means

An IECC-compliant renovation makes the building significantly more efficient while also ensuring it meets modern legal standards. The improved envelope and systems reduce operating costs, lower the building's carbon footprint, and provide a much higher level of comfort for occupants.

The benefit of this approach is that it delivers major improvements while achieving the minimum compliance needed for permitting. It represents a substantial leap forward compared to the existing building, typically **cutting operating costs** and energy use by nearly two-thirds.

However, the limitation of stopping at code minimum is that the building will still use more energy than a high-performance building, such as one designed to Passive House (PHIUS) standards. It remains less resilient to future energy price increases and does not fully maximize long-term carbon savings. In other words, while this is a significant step forward, it establishes a baseline rather than a forward-looking solution.

PHIUS-Compliant Building Renovation

The second renovation scenario goes further by adopting the **Passive House (PHIUS) standard**. Unlike code minimum upgrades, this approach prioritizes the performance of the building envelope itself. The design includes significantly higher insulation levels, ultra-efficient windows, and an exceptionally tight building shell. While the heating, cooling, and ventilation systems remain efficient, the real gains come from reducing the building's overall energy demand through envelope design.

Assumed Values for PHIUS Renovation

- **Slab:** R-30
- **Walls (Above Grade):** R-32
- **Roof:** R-60
- **Windows:** Whole window U-.26, Glass U-.16, SHGC-.3
- **Air Leakage:** 0.06 CFM / SF
- **HVAC:** Ventacity central ERV on rooftop
- **DHW:** CentralHybrid HPWH
- **Lighting:** LED

What This Means

A PHIUS-compliant renovation doesn't just meet code—it sets the building up as a **high-performance model** of efficiency, comfort, and resilience. The robust envelope ensures consistent indoor temperatures, eliminates drafts, and provides excellent protection against extreme weather. In addition, the tighter and more insulated building shell reduces mechanical strain, creating a longer-lasting system with fewer maintenance demands.

The benefit of this approach is clear: energy use is minimized, operating costs are significantly lower, and the long-term resilience of the building is greatly improved. Occupants enjoy superior comfort and air quality, while the building's carbon footprint is drastically reduced.

The limitation of PHIUS, however, is its higher upfront construction cost. Meeting Passive House standards requires more investment in insulation, windows, and air-sealing details than a code-minimum renovation. Yet, this cost is often offset by the long-term savings in utility bills, as well as the non-financial benefits of durability, comfort, and climate resilience. In short, while more ambitious, PHIUS offers the greatest return in performance and long-term value.

Conclusions

In evaluating the two renovation pathways—**IECC 2024 compliance and PHIUS certification**—this study highlights both the practical feasibility of a code-minimum renovation and the transformative potential of a high-performance building.

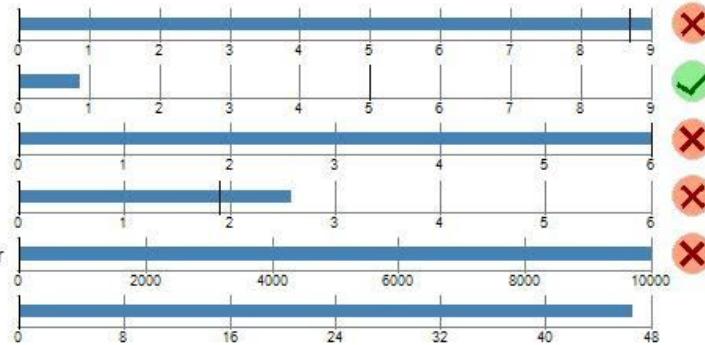
An **IECC-compliant renovation** represents a significant leap forward from the existing baseline. This approach achieves legal compliance, streamlines permitting, and aligns with standard construction practices and funding thresholds. It offers a cost-effective path to adaptive reuse, ensuring the project delivers affordable, equitable housing at a reasonable price point without introducing additional complexity.

By contrast, a **PHIUS renovation** pushes the project beyond compliance into the realm of high performance. This pathway offers benefits that extend beyond efficiency: consistent indoor comfort, improved air quality, resilience against extreme weather, and reduced long-term operating costs. For development partners, it positions the project for sustainability-focused funding streams, tax credits, and financing tools increasingly tied to climate action and ESG goals.

The key difference lies in **short-term cost versus long-term value**. IECC compliance ensures the building meets today's requirements with substantial efficiency gains, while PHIUS requires higher upfront investment but delivers deeper energy savings, greater resilience, and competitive positioning for future funding opportunities.

Ultimately, this dual-path strategy reflects a core principle of the study: the project is **achievable today** under either scenario, while retaining the flexibility to aim higher. The choice comes down to balancing immediate feasibility with the long-term operational vision for the building—whether to pursue compliance or to invest in performance that sets a new standard for sustainable, affordable housing.

Energy Modeling Base Case


The current building serves as the baseline for evaluation. As it stands, the structure is outdated in terms of energy performance. With virtually no insulation, modest-quality windows, and significant air leakage, the building consumes far more energy than is appropriate for modern standards. This level of performance is neither cost-effective in the long term nor suitable for meeting current energy codes.

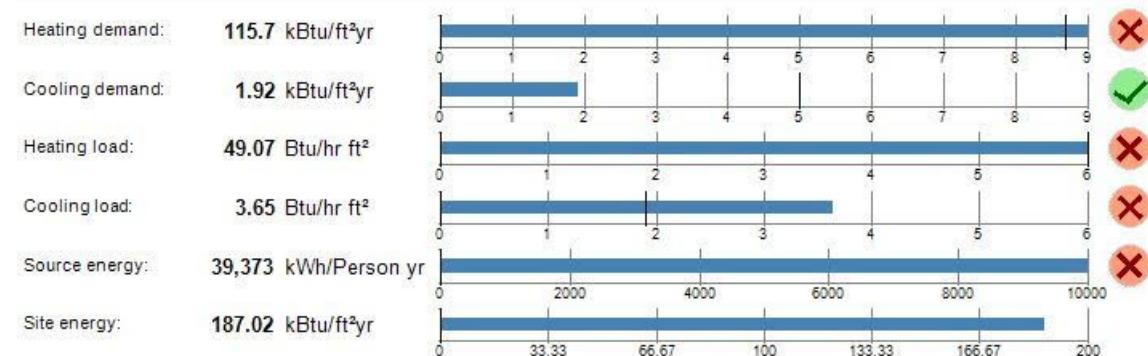
Modeling Information

- **Slab:** Uninsulated
- **Walls (Above Grade):** Face brick over CMU block, uninsulated
- **Roof:** 3" Polyiso, R-18
- **Windows:** Single Pane Whole Window U-0.67, Glass U-Value U-0.7, SHGC-0.3
- **Heating (HVAC):** Central Boiler
- **Domestic Hot Water (DHW):** Central Boiler
- **Ventilation:** Supply ventilation, Uninsulated Ductwork
- **Lighting:** Non-LED

WUFI Modeling Results

Heating demand:	100.67 kBtu/ft²yr
Cooling demand:	0.86 kBtu/ft²yr
Heating load:	42.35 Btu/hr ft²
Cooling load:	2.59 Btu/hr ft²
Source energy:	15,168 kWh/Person yr
Site energy:	46.64 kBtu/ft²yr

Energy Modeling Case #1 IECC Compliant


The first renovation scenario upgrades the building to meet **IECC code minimums**. This means bringing the structure in line with today's baseline legal requirements for energy performance. To achieve this, the design includes continuous exterior insulation, higher-performing windows, better air sealing, and more efficient heating, cooling, and ventilation systems.

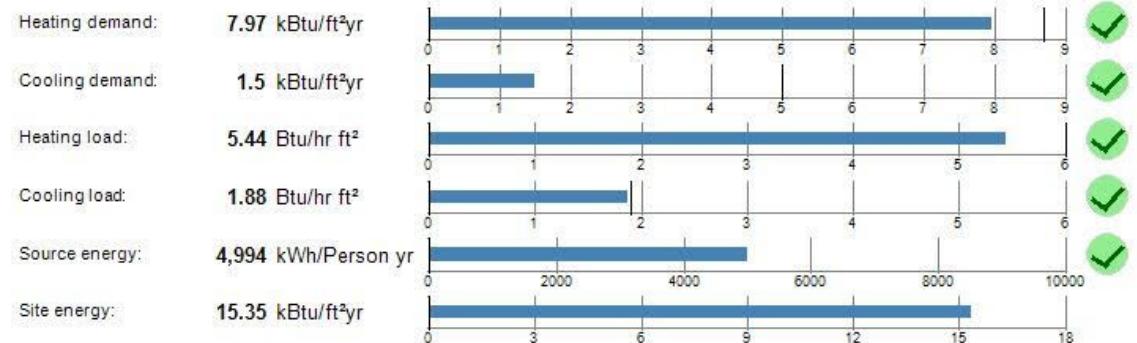
With these upgrades, the building becomes **legally compliant and far more efficient** than its current state. Energy use drops by about two-thirds, showing how significant code-minimum improvements can be. This represents the standard benchmark for permitting and what a "typical" renovated building would look like under today's energy codes.

Modeling Information

- **Slab:** Uninsulated, perimeter insulation only R10, 4' down
- **Walls (Above Grade):** R-12 Continuous over mass wall
- **Roof:** R-32 over decking
- **Windows:** U-0.3 SHGC-0.3
- **Air Leakage:** 0.4 CFM/ SF
- **HVAC:** Balanced ventilation, no recovery efficiency. 0.8 W/CFM
- **DHW:** CentralHybrid HPWH, UEF 3.45, recirculation
- **Lighting:** LED

WUFI Modeling Results

Energy Modeling Case #2 PHIUS


The second renovation scenario goes further by adopting the **Passive House (PHIUS) standard**. Unlike code minimum upgrades, this approach prioritizes the performance of the building envelope itself. The design includes significantly higher insulation levels, ultra-efficient windows, and an exceptionally tight building shell. While the heating, cooling, and ventilation systems remain efficient, the real gains come from reducing the building's overall energy demand through envelope design.

This strategy pushes efficiency well beyond code compliance, achieving a **reduction in energy use compared to the existing building** that is better than the IECC scenario.

Modeling Information

- **Slab:** R-30
- **Walls (Above Grade):** R-32
- **Roof:** R-60
- **Windows:** Whole window U-.26, Glass U-.16, SHGC-.3
- **Air Leakage:** 0.06 CFM / SF
- **HVAC:** Ventacity central ERV on rooftop
- **DHW:** CentralHybrid HPWH
- **Lighting:** LED

WUFI Modeling Results

Approach Summary

At the feasibility stage of a project, especially one involving adaptive reuse, a **Rough Order of Magnitude (ROM) cost estimate** plays a critical role in shaping early decision-making. While inherently high-level, this preliminary cost analysis provides stakeholders with a conceptual framework to understand the potential scale of investment required—well before detailed design or engineering begins. It is not meant to be precise, but rather to define a realistic cost boundary that supports strategic planning.

The ROM estimate serves as a **financial litmus test**, helping project sponsors, municipalities, or development partners gauge whether the vision is within reach. It draws on industry benchmarks, historical project data, and cost-per-square-foot assumptions that are appropriate to the building type, program, and regional construction climate. While it cannot predict every variable, it does highlight where further clarity will be needed—such as in environmental remediation, structural upgrades, MEP system replacement, or code-driven modifications. These early insights help to identify potential cost “blind spots” that should be addressed as the project moves into schematic design.

Importantly, a well-documented ROM estimate can also function as a **foundational tool for decision-making and procurement**. Whether used to shape a Request for Proposals (RFP) for developers, design professionals, or construction partners, it sets clear expectations and helps establish a shared understanding of scope and scale. In doing so, it bridges the gap between concept and execution—ensuring that future project phases are grounded in both ambition and practical feasibility.

Defined Costs

In any development estimate, project costs are typically divided into **hard costs** and **soft costs**—a distinction that helps clarify where money is being spent and how those costs behave over the course of a project. While most experienced teams are familiar with these terms, understanding their implications at the **feasibility stage** is critical to shaping accurate expectations and making informed decisions.

Hard costs refer to the physical, brick-and-mortar components of construction: materials, labor, building systems, site work, and contractor overhead. These are typically more straightforward to quantify and benchmark, especially when existing buildings provide measurable data points like square footage, structure, or envelope conditions. They represent the core of what gets built—and tend to follow predictable pricing patterns within a given region or market.

Soft costs, on the other hand, encompass the **professional services, administrative requirements, and financing structures** that support a project's execution. These include architectural and engineering fees, permitting, legal services, insurance, commissioning, and often, financing or carrying costs. While not physically visible in the final structure, soft costs are essential to getting a project approved, designed, and delivered. Because they are more sensitive to variables like project complexity, entitlement processes, or agency coordination, soft costs can fluctuate significantly—even early on.

At the feasibility stage, including both cost categories in a Rough Order of Magnitude estimate ensures a **holistic understanding of total project exposure**. For teams preparing an RFP or developers evaluating project viability, this context helps set realistic financial expectations and avoids common pitfalls where soft costs are underestimated or overlooked.

At this stage of project development, the design is not yet fully defined, and several systems, materials, and finishes remain in conceptual form. To ensure that the **Rough Order of Magnitude (ROM) Cost Estimate** reflects a realistic picture of probable project cost, **allowances** are incorporated for these developing or undetermined components.

These allowances serve as **financial placeholders**, capturing the cost exposure associated with elements that are known to exist but are not yet sufficiently detailed to be priced precisely. This approach maintains transparency and prevents the estimate from appearing artificially low, providing both the client and project team with a more reliable budgeting framework as the design evolves.

Allowance percentages are established using a combination of **industry benchmarks** (RSMeans, Marshall & Swift) and **historical cost data from comparable Signal Works projects**. The percentages reflect the **level of design definition and scope certainty** typical of a ROM estimate:

- **Conceptual / Feasibility Phase:** 15–25% range to capture undefined scope and early design volatility
- **Schematic Design:** 10–15% range as systems and materials become more clearly defined
- **Design Development:** 5–10% range where major design parameters are stabilized

These values are adjusted based on **project complexity, construction market conditions, and confidence in available cost data**.

The inclusion of allowances at this stage supports an informed and responsible budgeting process, allowing future design refinements to occur without introducing major deviations from the established financial envelope.

Cost Benchmarking Narrative

The proposed conversion of the former school building into a 24-unit residential community is currently trending at approximately **\$230 per square foot** in hard construction costs for IECC compliance, conventional construction. To contextualize this figure, industry sources for adaptive reuse projects (particularly conversions of institutional and commercial buildings into residential uses) report a broad range of cost profiles:

- According to an industry article, adaptive reuse conversions of commercial/institutional buildings into residential typically run between **\$250–\$350 per square foot** ([source link](#)).
- Some recent data shows conversion cost ranges spanning **\$150–\$500 per square foot**, depending on building condition, structural modifications, systems upgrades, and interior finish levels ([source link](#)).
- For historic adaptive reuse (where the building shell is preserved but serious systems and structural work is needed), cost premiums are common; one source notes labor productivity impacts and custom-material requirements that raise cost expectations ([source link](#)).

Given these benchmarks, the \$230/ SF hard cost projection for your project places the work at the **low-mid end** of the typical conversion cost spectrum. This suggests your budget is both conservative and competitive — provided the building conditions, systems scope, and unit finish levels align with the assumptions underpinning your estimate.

Implications and Risk Considerations

- Being beneath the general benchmark (~\$250–\$350/ SF) gives favorable room in the budget for contingencies, soft costs, or modest finish upgrades while maintaining budget discipline.
- It confirms the feasibility of the project from a cost standpoint and supports a pro forma predicated on mid-market to slightly premium rent levels.
- That said, because adaptive reuse projects often carry unknown structural/mechanical risk factors (hazardous materials, hidden wall/roof issues, MEP re-routing, fire/life-safety and accessibility upgrades), it is prudent to maintain a robust allowance and contingency strategy to protect the budget.
- As design advances, verifying the existing shell, structural grid, and mechanical distribution path is critical — any major surprises could push the actual cost toward the higher end of the benchmark range.

- From a lender/investor perspective, articulating that your estimate is intentionally realigned with industry benchmarks strengthens credibility of the capital stack and supports discussions around underwriting flexibility or cushion for cost escalation.

Estimate Findings

Summary:

The feasibility analysis confirms that the adaptive reuse of the former school building into affordable housing is a viable development opportunity with multiple implementation pathways. Two distinct performance strategies were examined—one aligned with the 2024 IECC code requirements and another targeting PHIUS certification. Each was modeled using a consistent renovation scope, allowing for a direct comparison of programmatic outcomes, capital investment, and alignment with long-term goals around sustainability and housing access.

Beyond confirming baseline feasibility, the findings underscore the adaptability of the existing structure. The design team accommodated a full residential program including one- and two-bedroom units, storage, and community amenities entirely within the original building envelope. The study also identified future opportunities for phased expansion, such as gymnasium infill or the reconfiguration of common areas, further reinforcing the site's long-term potential.

Cost modeling revealed several key areas where performance goals directly influence construction costs. In particular, notable increases were identified in **Division 07 (Thermal and Moisture Protection)**, where higher insulation values and air-tightness requirements significantly drive cost in PHIUS-aligned design. Similarly, **Division 23 (HVAC)** and **Division 26 (Electrical)** carried substantial increases due to enhanced mechanical systems, energy recovery requirements, and electrical upgrades supporting electrification and renewable energy readiness. These divisions represent critical drivers in the shift from baseline to high-performance design, and their early identification helps inform funding strategies and design priorities.

Ultimately, the findings provide a practical and flexible foundation for moving forward. Whether pursued through a code-compliant strategy or an enhanced performance pathway, the project is shown to be both technically and financially feasible. The analysis equips public stakeholders, development partners, and design teams with a clear roadmap grounded in real data for transforming this legacy building into a resilient, high-quality housing asset.

ROM Estimate Figures:

USE Case #01: Non-PHIUS, Code Compliant per IECC 2024

- Full Interior Renovation
 - Walls Insulated to R-12
 - Roof Insulated to R-32 over decking
 - Windows to U-0.3 SHGC-0.3
- Hard-Costs = \$6,962,342 (\$229.5/sf)
- Soft-Costs = \$1,740,585 (\$57.38/sf)
- Contingency / Escalation = \$870,293
- **Total Project Cost (+/-) = \$9,573,220 (\$315.56/sf)**

USE Case #02: PHIUS Compliance / Certification

- PHIUS Compliance Criteria
 - Walls Insulated to R-32
 - Roof Insulated to R-60
 - New Windows to U-0.26 (whole window) Glass to U-0.16 SHGC-0.3
- Hard-Costs = \$9,842,122.96 (\$337/sf)
- Soft-Costs = \$2,074,815.36 (\$71/sf)
- Contingency / Escalation = \$1,292,385
- **Total Project Costs (+/-) = \$13,208,323 (\$452/sf)**

Recommended Additional Allowance Items:

- On-site Renewable Energy Production: ~5% of Hard-Costs
 - Includes roof-mounted solar array, conduit infrastructure, inverters, and structural allowances.
- Hazardous Materials - Testing & Abatement: ~5% of Hard-Costs
 - Covers potential asbestos, lead-based paint, or PCB removal based on typical school building conditions.
- Exterior Accessibility Improvements: ~3% of Hard-Costs
 - For interior and exterior modifications including accessible units, compliant egress, ramps, and signage.
- Site Work & Landscaping: ~7% of Hard-Costs
 - Assumes reconfiguration of surface parking, accessible paths, limited hardscape, and plantings.

Strategic Considerations: PHIUS vs. IECC Compliance

In evaluating two performance pathways—IECC 2024 compliance and PHIUS certification—this study highlights both the immediate feasibility and long-term potential of the project. While the Passive House (PHIUS) scenario requires a higher upfront capital investment, it positions the development to deliver sustained energy savings, increased comfort, and alignment with state-level priorities for building decarbonization and performance-based housing.

The PHIUS path introduces increased thermal performance standards, reduced energy demand, and greater resilience. For residents, this can mean lower utility bills and improved indoor air quality. For development partners, it may open access to additional funding streams, sustainability-focused tax credits, and competitive positioning for public-private financing tools increasingly linked to ESG goals.

That said, the code-compliant design—based on the 2024 IECC—remains a fully viable and cost-effective approach. It allows for the adaptive reuse of the school into affordable housing at a reasonable price point, aligned with standard construction practices and funding thresholds. This path retains the core mission of delivering equitable, high-quality housing while reducing complexity during permitting and construction.

This dual-path strategy reflects a fundamental principle of the feasibility study: the project is **achievable today**, with the flexibility to **aspire further**. It invites development teams to weigh costs, benefits, and funding strategies with a clear understanding of the tradeoffs—and to select the approach that best matches their capacity, funding sources, and long-term operational vision.

CSI Divisional Breakdown (Projected)

Division Name	IECC Compliant Costs	PHIUS Compliant Costs
Division 02 - Existing Conditions	\$364,004	\$364,004
Division 03 - Concrete	\$22,753	\$22,753
Division 04 - Masonry	\$136,517	\$136,517
Division 05 - Metals	\$45,506	\$52,332
Division 06 - Woods / Plastics / Composites	\$151,685	\$197,190
Division 07 - Thermal & Moisture Protection	\$485,392	\$841,100
Division 08 - Openings	\$242,696	\$670,275
Division 09 - Finishes	\$1,365,165	\$1,815,000
Division 10 - Specialties	\$22,753	\$22,753
Division 21 - Fire Protection	\$197,191	\$197,191
Division 22 - Plumbing	\$910,110	\$1,292,132
Division 23 - HVAC	\$2,123,590	\$3,169,080
Division 26 - Electrical	\$667,414	\$834,268
Division 27 - Communications	\$75,843	\$75,843
Division 28 - Electronic Safety & Security	\$151,685	\$151,685
Total Hard-Costs	\$6,962,342	\$9,842,123
General Conditions (not all-inclusive list)	\$364,779	\$691,272
Insurance, Bonds, Fees	<i>Included Above</i>	<i>Included Above</i>
Safety & Security	<i>Included Above</i>	<i>Included Above</i>
Site Services & Temporary Utilities	<i>Included Above</i>	<i>Included Above</i>
General Requirements (not all-inclusive list)	\$636,024	\$1,382,543
Administrative Requirements	<i>Included Above</i>	<i>Included Above</i>
Quality & Performance Requirements	<i>Included Above</i>	<i>Included Above</i>
Special Project Procedures	<i>Included Above</i>	<i>Included Above</i>
Project Closeout	<i>Included Above</i>	<i>Included Above</i>
Total Soft-Costs*	\$1,740,585	\$2,073,815
Recommended Escalation & Contingency	\$870,293	\$1,292,385
Total Project Costs	\$9,573,220	\$13,208,323

CONCLUSIONS

Summary of Findings

The proposed adaptive reuse of the former Oak Haven Elementary School Building Site at 46 Pettine Street in Coventry, RI, envisions the transformation of a mid-20th century public school into a 24-unit multi-family residential development. With its durable masonry construction, expansive classroom bays, and high-ceilinged corridors, the building provides a strong foundation for residential conversion—balancing architectural preservation with modern functionality. The preferred design strategy maximizes unit potential by introducing two daylight courtyards, converting the gymnasium into lofted apartments, and repurposing classrooms into spacious one-bedroom units. Additional program elements include resident community rooms, support/storage areas, and improved site access through Princeton Avenue frontage.

Although zoned R-20 (Residential, 20,000 sq. ft.), the site is eligible for adaptive reuse under Section §255-900 of Coventry's zoning ordinance, which allows multi-family redevelopment of existing institutional structures subject to compliance criteria. With a 7-acre lot size, 9.6% lot coverage, and feasible surface parking layouts (estimated capacity ~75 spaces), the project satisfies key dimensional requirements, with only minor municipal input required. These factors reinforce the contextual appropriateness of the program and support streamlined approvals.

To align with long-term housing affordability and sustainability goals, the study modeled two energy performance pathways: (1) a code-compliant renovation meeting the 2024 International Energy Conservation Code (IECC) and (2) a high-performance renovation targeting PHIUS (Passive House Institute U.S.) certification. While both options substantially improve efficiency over existing conditions, the PHIUS pathway introduces a dramatically tighter building envelope, superior insulation, and ultra-efficient windows—offering deeper energy savings, resilience against extreme weather, and enhanced resident comfort.

A Rough Order of Magnitude (ROM) cost estimate was prepared to test feasibility. Both hard costs (materials, labor, building systems) and soft costs (design, permitting, administrative fees) were included, along with escalation and contingency allowances. Key cost drivers between the IECC and PHIUS pathways emerged in Division 07 (Thermal & Moisture Protection), Division 23 (HVAC), and Division 26 (Electrical)—consistent with the higher-performance demands of PHIUS. Additional allowances were identified for hazardous materials abatement, accessibility upgrades, site work, and on-site renewable energy readiness.

Overall, the feasibility study confirms that redevelopment of 46 Pettine Street is both technically and financially achievable, with flexibility to pursue either a baseline or high-performance path. The adaptive reuse plan preserves the architectural character of the school while transforming it into a vital housing resource. Whether advanced through a cost-conscious IECC strategy or

an ambitious PHIUS-aligned design, the project supports affordability, neighborhood compatibility, and long-term resilience.

Development Guidance Note: Use in Future RFPs

The following development guidance is intended to help public stakeholders, funding agencies, and prospective development teams translate the findings of this feasibility study into actionable next steps. It outlines key considerations for procurement, performance alignment, and scope flexibility—framing how the project can move from conceptual planning into solicitation and execution. Whether the goal is to issue an RFP, engage design professionals, or evaluate funding strategies, this guidance supports a clear and informed path forward.

- The two cost scenarios provided in this feasibility study are intended to inform the structure of future Requests for Proposals (RFPs) for development or design teams. The information herein supports either of the following pathways:
- A base proposal that meets IECC 2024 energy code compliance and fulfills all stated affordability and programmatic goals, or
- An enhanced proposal that targets PHIUS certification and demonstrates a commitment to high-performance building strategies and long-term energy savings.
- RFP issuers may choose to encourage respondents to propose one or both options, accompanied by a narrative that articulates cost, constructability, and funding implications. This flexibility enables competitive responses while ensuring alignment with the state's broader goals for sustainable development and housing equity.
- By grounding this RFP framework in clearly defined cost estimates and performance tiers, public stakeholders can better evaluate proposals not just on budget, but on long-term value, environmental impact, and community benefit.

Key Findings & Outcomes

The study confirms that 46 Pettine Street presents a strong opportunity for adaptive reuse, transforming a legacy school building into 24 high-quality residential units. From a regulatory standpoint, zoning compliance is achievable through adaptive reuse provisions, requiring only minor frontage adjustments to proceed. Site feasibility is reinforced by the ability to provide approximately ample on-site parking spaces, with presented options exceeding ordinance requirements. Finally, both IECC and PHIUS design scenarios deliver significant improvements in energy performance compared to existing conditions, with the PHIUS pathway offering the greatest long-term advantages in efficiency, comfort, and resilience.

The proposed redevelopment of 46 Pettine Street envisions a total of 24 residential units, thoughtfully organized to maximize both livability and efficiency. The program consists primarily of 20 one-bedroom, one-bathroom apartments of approximately 800 square feet each, complemented by four two-bedroom, two-bathroom loft-style apartments designed as two-floor units. These distinct two-level homes are created through the adaptation of the former gymnasium space, offering interiors that take advantage of the gym's generous ceiling height. In addition to the residential areas, the design incorporates two community rooms of about 170 square feet each, fostering shared amenities for residents, as well as two landscape courtyards ranging between 900 and 950 feet that bring daylight and outdoor gathering opportunities into the interior of the building.

Supporting functions are addressed through two utility or storage rooms, each between 500 and 600 square feet, ensuring that operational needs are met without compromising residential space. The site's zoning, designated R-20 Residential, permits adaptive reuse under Section §255-900, allowing for multi-family redevelopment of the existing school structure. Parking feasibility has been confirmed to fit the parking requirements, meeting the required one-to-one ratio and supporting the project's integration into the surrounding neighborhood.

Energy Strategy Comparison: IECC vs. PHIUS

Two performance scenarios were evaluated, each with significant implications for long-term energy use, construction cost, and sustainability:

Use Case #1 – IECC 2024 Compliance:

This scenario meets baseline performance standards and is designed to be cost-efficient and achievable with conventional construction methods.

- **Opaque Thermal Envelope Requirements:**
 - Wall Insulation (@ Existing Perimeter): R-13.3ci over Existing Mass Wall Assembly
 - Roof: R-30ci Above Decking
 - Doors: U-0.37
- **Fenestration Thermal Requirements:**
 - Windows: U-0.3 // SHGC-0.3
- **Air Leakage**
 - Assemblies: 0.04 CFM/sf
 - Fenestration: 0.3 CFM/sf
- **Building MEP Systems:**
 - HVAC and DHW: High-Efficiency Heat Pump Systems

- LED Lighting & Ventilation Systems
- **Project Financials:**
 - **Hard-Costs:** \$6.96M (\$229/sf)
 - **Soft-Costs:** \$1.74M (\$57/sf)
 - **Total (with contingency):** \$9.57M (\$315/sf)

Use Case #2 – PHIUS Compliance/Certification:

This approach targets a much more aggressive energy performance profile, reducing long-term utility costs and increasing comfort and resilience.

- **Opaque Thermal Envelope Requirements:**
 - Wall Insulation: R-32
 - Roof: R-60
- **Fenestration Thermal Requirements:**
 - Windows: U-0.26 (whole window), U-0.16 (glass)
- **Air Leakage:**
 - All Systems & Assemblies: 0.06 CFM/sf
- **Building MEP Systems:**
 - HVAC & DHW: Central Ventilation w/ Recovery & Central HPHW System
 - LED Lighting
- **Project Financials:**
 - **Hard Costs:** \$9.84M (\$337/sf)
 - **Soft Costs:** \$2.07M (\$71/sf)
 - **Total (with contingency):** \$13.21M (\$452/sf)

Market Viability & Strategic Considerations

Market viability for 46 Pettine Street was evaluated through a combination of current HUD Fair Market Rent thresholds, private listing platform data (Zumper, RentCafe, Apartments.com, Zillow), and state-level housing reports to establish realistic rental rates for underwriting purposes. Coventry falls within the Providence–Fall River, RI–MA HUD Metro FMR Area, which provides a conservative baseline for achievable rents in the area. Private listing data serves as the market ceiling, reflecting current asking rents in the open market for both newly renovated and standard-quality units.

Unit Type	HUD FMR (FY2025)*	Typical Asking Rent (Market)**	High-End Asking (Market Stretch)***
Studio	\$1,233	\$1,500–\$1,650	\$1,750+
1 Bedroom	\$1,319	\$1,650–\$1,850	\$1,900+
2 Bedroom	\$1,614	\$2,000–\$2,300	\$2,400+

* **Source:** FY2025 HUD Fair Market Rents – Providence–Fall River, RI–MA Metro Area

** **Source:** RentCafe, Zumper, Apartments.com, Zillow (Q4 2025)

*** Reflects upper-range asking rents for well-renovated, amenitized properties.

Recent market analyses indicate that average asking rents in Coventry have increased by approximately **8–9% year-over-year**, reflecting strong demand and limited rental inventory. **HUD FMRs continue to trail market rates by 15–25%**, which is consistent with broader Rhode Island rental dynamics.

From an underwriting perspective, these figures provide a clear **banding strategy**:

- **Low Case:** HUD FMR – conservative rents for subsidy or affordability-driven units.
- **Mid Case:** Current market asking rents for standard renovated units.
- **High Case:** Market stretch for units with enhanced amenities or new construction.

For pro forma modeling, this translates into:

- **1BR units:** \$1,650–\$1,850 baseline assumption.
- **2BR units:** \$2,000–\$2,300 baseline assumption.
- Escalation assumptions in line with 3–4% annual rent growth are appropriate based on regional trends and ongoing supply constraints.

Affordability analysis suggests that a 2-bedroom unit at \$2,300/month aligns with a target household income of approximately **\$92,000 annually** (based on a 30% rent-to-income ratio), which is **comparable to Kent County's median household income band for**

moderate-income earners. This indicates **viable market absorption potential** for both workforce and market-rate housing.

Positioning Summary

The proposed unit sizes at 46 Pettine Street exceed typical local comparables, where most Coventry 1-bedroom apartments range between 550 – 700 SF and 2-bedrooms between 1,200 – 1,500 SF. This larger format, coupled with presumed new construction or full adaptive-reuse finishes, places the project firmly in the upper-tier market segment — appealing to tenants seeking space, quality, and stability rather than discount rents.

- **1-Bedroom Units:** At 800–900 SF, these units are 20–30% larger than the regional average and can command \$1.85 – \$2.10 / SF, yielding rents of roughly \$1,600 – \$1,900 per month without over-reaching the market.
- **2-Bedroom Units:** At 1,200–1,500 SF, these units sit at a premium scale uncommon in the area and could support \$2,600 – \$3,000 per month if delivered with high-quality finishes, parking, and amenities.
- This positioning provides a clear differentiation: spacious, well-finished apartments in a suburban context where most existing supply is dated or undersized.

Implications for This Development

1. **Market Differentiation:** Larger-than-average unit footprints create a boutique, “right-sized” product that distinguishes the property from older multifamily stock in Coventry and nearby West Warwick.
2. **Target Demographic:** The mix appeals to downsizing homeowners, professional couples, and remote workers who prioritize square footage and quiet residential context over proximity to urban cores.
3. **Pricing Strategy:** The project can safely exceed HUD FMRs by 15–25% while remaining attainable to middle-income households earning \$70–100 k+, supporting strong absorption without pricing out the local workforce.
4. **Stabilization Outlook:** With only 24 total units, absorption risk is low; at mid-market rents (\$1,800 avg.), the project should reach stabilization within 3–6 months of opening.
5. **Long-Term Viability:** Given constrained new supply in Kent County and consistent 3–4% annual rent growth, these units are well-positioned to maintain above-average occupancy and yield stability over a 10-year horizon.

Recommended Next Steps

The findings of this feasibility study are intended to inform the property owner in preparation of future procurement, funding applications, and development strategies for 46 Pettine Street. To bridge concept and execution, stakeholders may use the dual-path framework to structure future Requests for Proposals (RFPs) and funding solicitations.

The Property Owner should evaluate the energy upgrade options and identify their goals:

- **Base Proposal:** IECC-compliant renovation, meeting all programmatic and affordability goals at the lowest cost threshold.
- **Enhanced Proposal:** PHIUS-aligned renovation, demonstrating leadership in high-performance design, resilience, and long-term operating savings.

This dual-option format provides flexibility, fosters competitive responses, and positions the project to attract both traditional developers and sustainability-focused partners. It also aligns with state and federal funding priorities around decarbonization, affordable housing, and ESG-driven investment.

By grounding the RFP in defined cost estimates, zoning context, and performance tiers, stakeholders can evaluate proposals on more than budget alone—placing equal weight on long-term value, sustainability, and community impact.

These steps are designed to guide the municipality through the initial project implementation process—particularly the issuance of a Request for Proposals (RFP) to attract qualified development or design-build teams. They are intentionally structured to be straightforward, flexible, and scalable based on local capacity and funding environment. The below two-tiered approach allows the municipality to take **immediate, low-barrier actions** while setting the stage for a well-informed and competitive developer selection process.

Initial Next Steps

1. Confirm Project Goals & Performance Target

- Decide whether the RFP will prioritize IECC compliance or encourage PHIUS certification.
- Establish affordability goals, unit mix expectations, and any preferences for building reuse vs. new construction (e.g., preserve auditorium).

2. Engage City Planning & Zoning Early

- Confirm adaptive reuse eligibility under PS zoning.

- Explore options for shared parking or adjacent lot partnerships, especially with city-owned parcels.

3. Commission Environmental & Hazardous Materials Testing

- Conduct a hazmat survey (asbestos, lead, PCBs) to validate abatement needs.
- Initiate a Phase I ESA (if not done) to ensure environmental due diligence before RFP release.

4. Begin Drafting the RFP

- Use this feasibility study as the basis for scope, performance benchmarks, and evaluation criteria.

Parallel or Follow-Up Steps

1. Outline Funding Strategy

- Identify local/state funding opportunities (ARPA, LIHTC, passive house incentives, etc.).
- Clarify any municipal contributions: land value, subsidies, PILOT agreements, etc.

2. Engage Developer Community (Optional but Valuable)

- Host an informal listening session or site walk-through to share the opportunity.
- Use feedback to refine the RFP structure and anticipate interest or concerns.

3. Finalize & Release RFP

- Structure the RFP to allow for both baseline and PHIUS-aligned proposals.
- Clearly define evaluation criteria based on feasibility, affordability, sustainability, and public benefit.

Final Note

This feasibility study is designed to serve as a foundational tool for moving this project forward with confidence. By following the steps above, the municipality or property owner will be well-positioned to attract qualified partners and translate a vision for sustainable, adaptive housing into a built reality.